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EXECUTIVE SUMMARY 

This project addresses the critical need for comprehensive traffic data in tribal and rural areas, which 

often suffer from disproportionately high rates of traffic incidents due to limited infrastructure and 

resources. By implementing a low-cost, user-friendly data collection system, this project aimed to 

provide real-time traffic information that can significantly enhance traffic safety. The pilot installation in 

Yakama Nation, Washington, represents a crucial step in this initiative. The chosen location, an 

intersection at Larue Road and Highway 97 in Toppenish, is known for its high traffic volume and 

frequent accidents, making it an ideal candidate for the deployment of the MUST (Mobile Unit for 

Sensing Traffic) sensor. This project involved close collaboration with the Yakama Nation's Tribal Traffic 

Safety Coordinator and Yakama Power, ensuring the successful installation and operation of the sensor 

on a strategically selected telephone pole. 

The MUST system, equipped with advanced machine learning technology, provides detailed data on 

traffic flow, road surface conditions, and environmental factors such as temperature and humidity. This 

data is visualized and managed through a sophisticated dashboard, enabling real-time monitoring and 

data-driven decision-making. The real-time insights offered by the MUST system allow for the 

identification of high-risk areas and the implementation of targeted safety measures, such as improved 

signage and road maintenance. Moreover, the continuous data collection helps address specific safety 

concerns, including pedestrian safety, visibility issues due to heavy fog, and driver behavior problems 

like speeding. By providing a robust dataset that was previously unavailable, the MUST project supports 

the Yakama Nation’s goal of understanding and mitigating traffic safety issues, ultimately enhancing the 

overall safety and quality of life for the community. This pilot project serves as a model for other tribal 

and rural areas seeking to leverage advanced technology to improve their transportation safety 

infrastructure.  
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CHAPTER 1. INTRODUCTION 

1.1. Research Background 

Tribal and rural areas often face significant challenges in terms of traffic safety due to a distinct lack of 

data available for use by practitioners. This gap in data collection and analysis hampers the ability of 

engineers and traffic safety officials to effectively monitor and address traffic safety issues. To bridge 

this gap, our project aims to implement a low-cost and user-friendly data collection system known as 

the Mobile Unit for Sensing Traffic (MUST). This innovative solution is designed to provide 

comprehensive and real-time traffic data, thereby enhancing traffic safety in these underserved areas. 

Tribal and rural areas in the United States face unique challenges in terms of transportation safety. 

According to the Federal Highway Administration, traffic fatalities are disproportionately higher in rural 

areas compared to urban areas, and tribal lands often experience even higher rates (Federal, 2023). This 

is largely due to several factors including limited infrastructure, a lack of funding for road improvements, 

and inadequate data for traffic management and safety planning. These challenges are compounded by 

the vast and remote nature of many tribal lands, making it difficult to monitor and address safety 

concerns effectively. 

The transportation safety issues in tribal areas are multi-faceted. A 2019 report by the National Highway 

Traffic Safety Administration (NHTSA) highlights that American Indians and Alaska Natives (AI/AN) have 

a motor vehicle death rate that is three times higher than the national average (National, 2020). Several 

contributing factors include: 

• Roadway Conditions: Many roads in tribal areas are unpaved, poorly maintained, and lack basic 

safety features such as proper signage, lighting, and guardrails. 

• Driver Behavior: Issues such as impaired driving, not using seat belts, and speeding are prevalent 

in many tribal areas. 

• Emergency Response: The remote locations of many tribal communities result in longer 

response times for emergency services, exacerbating the severity of accidents. 

• Funding and Resources: Tribes often lack the financial resources and technical expertise needed 

to implement comprehensive transportation safety programs. 

In response to these challenges, federal initiatives such as the Tribal Transportation Program (TTP) and 

the Tribal Transportation Safety Fund (TTSF) have been established to provide funding and support for 
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improving transportation infrastructure and safety in tribal areas. However, the lack of reliable and 

detailed traffic data remains a significant barrier to the effective implementation of safety measures.  

1.2. Research Objectives 

The primary objective of the Mobile Unit for Sensing Traffic (MUST) project is to enhance traffic safety in 

tribal and rural areas by developing and deploying a cost-effective, user-friendly data collection system 

capable of providing real-time, comprehensive traffic information. This project specifically aimed to 

address the significant gap in traffic data that hampers the ability of transportation planners and safety 

officials in these regions to monitor, analyze, and improve road safety conditions effectively. 

Key to achieving this objective is the implementation of the MUST system, which utilizes advanced 

machine learning technology to gather detailed data on various traffic parameters, including vehicle 

counts, traffic flow, road surface conditions, and environmental factors such as humidity and 

temperature. The system’s deployment at a high-risk intersection in Yakama Nation, Washington, serves 

as a pilot to demonstrate its effectiveness and scalability for broader applications in similar regions. 

The project also aimed to develop a sophisticated dashboard for data visualization and management, 

ensuring that the collected data is accessible and actionable for engineers, safety officials, and 

community members. By providing real-time insights into traffic conditions, the dashboard supports 

data-driven decision-making processes, enabling the identification of high-risk areas and the 

implementation of targeted safety interventions. 

Another critical aspect of this research is to assess the impact of the MUST system on improving traffic 

safety outcomes in the Yakama Nation. This includes evaluating the effectiveness of the system in 

reducing traffic incidents, enhancing pedestrian safety, and mitigating the risks associated with adverse 

weather conditions and driver behavior issues. Additionally, the project seeks to explore the potential 

for integrating technologies and methodologies from related National Cooperative Highway Research 

Program (NCHRP) projects to further enhance the system’s capabilities. 

Overall, the MUST project aimed to provide a scalable, effective solution for traffic data collection and 

safety improvement in tribal and rural areas, thereby contributing to the broader goal of reducing 

traffic-related fatalities and injuries in these underserved communities. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Cooperative and Comprehensive Multi-Task Surveillance Sensing and Interaction 
System Empowered by Edge Artificial Intelligence 

2.1.1. Historical Background 

Roadside sensing systems have long been implemented for traffic monitoring, control, and enforcement. 

These systems historically relied on centralized traffic management centers (TMCs) to coordinate 

resources and manage data from various sensing technologies, such as inductive loops, magnetometers, 

microwave radars, LiDAR, ultrasound, and video detection systems (El Faouzi et al., 2011; Djahel et al., 

2014). 

2.1.2. Advantages and Challenges of TMC-Based Systems  

TMCs aggregate and process data from diverse sources, enabling more accurate decision-making and 

enhanced services. However, they face challenges such as high overheads, delays caused by data 

transmission, and difficulties integrating heterogeneous data. The large volume of data from various 

sensors can overwhelm TMCs, making it hard to meet the ultra-fast response time requirements of 

advanced ITS applications (El Faouzi et al., 2011; Zhou et al., 2021). 

2.1.3. Edge Computing Integration 

Edge computing offers significant benefits for ITS, including low latency, high computational efficiency, 

reduced bandwidth usage, and enhanced privacy. By processing data locally, edge computing reduces 

the load on central servers and enables faster response times. This approach is particularly valuable for 

real-time applications such as connected and autonomous vehicles, real-time traffic surveillance, and 

short-term traffic prediction (Zhou et al., 2021; Ferdowsi et al., 2019). 

2.1.4. Limitations of Current Systems 

Despite the advantages of edge computing, resource constraints on edge devices pose a challenge, 

especially when deploying computationally intensive AI models. To address this, techniques such as 

deep neural network compression are employed to optimize performance on edge devices (Han et al., 

2015). 
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2.1.5. Cooperative Perception 

Most current roadside sensing systems deploy sensors for individual tasks, leading to inefficiencies. 

Cooperative perception, which involves fusing information from multiple sensors, can enhance accuracy 

and perception range. Research has explored multi-agent cooperative perception among connected 

vehicles and infrastructure-based cooperative perception using vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication (Chen et al., 2017; Tsukada et al., 2020). 

To address these challenges, the project proposed the COCO SENSOR system, which integrates edge 

computing and cooperative perception to create a comprehensive and efficient roadside sensing 

system. The system is designed to process data locally, share sensing results among different 

components, and reduce data redundancy, ultimately enhancing the effectiveness of ITS applications. 

2.2. Machine Learning based Pedestrian Safety Analysis 

It can be noted that most of the literature relies on traditional statistical modeling approaches to 

address pedestrian safety issues. Nevertheless, with the recent advent of Machine Learning, some 

researchers have started applying these latest approaches to this type of problem. In 2018, Ding 

developed a study to examine built environmental effects on the frequency of crashes involving 

automobiles and pedestrians by applying Multiple Additive Poisson Regression Trees (MAPRT), a 

Machine Learning approach based on decision trees. Using data from Seattle, Washington, the study 

helped to detect non-linear relationships between the built environment and pedestrian collisions 

frequency, confronting the linearity assumption frequently used in studies that use statistical models 

(Ma, 2021). Das applied in 2020 distinct Machine Learning techniques to classify pedestrian collision 

types (intended vs. untended, pedestrian at fault vs. motorist at fault) using pedestrian crashing data 

from two locations in Texas (Wang, 2021).These reference studies were essential for the development 

of our methodology applied specifically to fatal collisions, an unprecedented approach so far. 

2.3. State of the Art and the Practice 

Recognizing the needs to improve pedestrian safety and reduce pedestrian injury and fatality, the 

Federal Highway Administration (FHWA) published a guide documented scalable risk assessment 

methods for pedestrians and bicyclists (Tsukada, 2020). The guide provides guidance on the steps to 

estimate the exposure to risk of pedestrian and bicyclists, including determining uses of risk values, 

selecting geographic scale, selecting risk definition, selecting exposure measure, selecting analytical 
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method to estimate exposure, using analytic method to estimate selected exposure measure, and 

calculating risk values.  

In addition, the FHWA developed the guidebook summarizing the data-driven approaches for identifying 

high-risk location for pedestrian (Liu, 2024). However, despite the intention of the guidebooks to make 

general approaches that could suit most agencies with different analysis capabilities and resources. 

Through the research team’s communication with tribal leaders and agencies, it is necessary to 

recognize that most agencies in the RITI communities do not have the practice to collect and manage 

pedestrian safety related data and lack the guidance of doing so. Without the practice of collecting 

necessary data and developing data-driven solutions, it is not easy for RITI communities to follow the 

approaches of such guidebooks. Besides, the uniqueness of roadway geometrics and operational 

characteristics, traffic characteristics, environmental conditions, and cultural and human behavior 

characteristics of RITI communities deserve unique data collection and assessment approaches in order 

to obtain accurate risk assessment results. These guidebooks are based on the classical Empirical Bayes 

safety performance function based approaches, while studies have suggested that machine learning 

based approaches could provide more insights from the multi-source pedestrian safety data (He 2011, 

Ma 2021, Tan 2008, Zhu 2015), as introduced in the previous section.  
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CHAPTER 3.  MAIN PROJECT AND CORRESPONDING TECHNOLOGY DEVELOPMENT 

3.1. Main Project 

The Yakama Nation, located in south-central Washington, is one of the largest Native American tribes in 

the Pacific Northwest. The tribe's reservation spans over 1.3 million acres, encompassing a diverse 

landscape that includes agricultural lands, forests, and urban areas. The Yakama Nation faces numerous 

transportation safety challenges, particularly at key intersections and roadways that experience high 

traffic volumes and frequent incidents. 

One of the most dangerous intersections on the Yakama Nation is at Larue Road and Highway 97 in 

Toppenish, WA. This intersection has been the site of numerous accidents, many of which involve semi-

trucks and agricultural vehicles, both of which are common in the area due to its agricultural economy. 

Additionally, pedestrian safety is a significant concern, as many community members rely on walking for 

their daily activities. 

Other notable safety concerns in the Yakama Nation include: 

• Visibility Issues: The area is prone to heavy fog and low visibility, especially during the colder 

months, which increases the risk of accidents. 

• Human Behavior: Speeding and failure to stop at stop signs are common issues, contributing to 

the high rate of traffic incidents. 

• Road Surface Conditions: The roads are often in poor condition, with issues such as potholes and 

uneven surfaces that can be hazardous for drivers. 

Given these challenges, there is a pressing need for a robust and effective data collection system that 

can provide real-time insights into traffic conditions and help inform safety interventions. The 

implementation of the MUST is aimed at addressing these needs by providing the Yakama Nation with a 

comprehensive tool for monitoring and improving transportation safety. 

As part of our initial implementation, we chose to install the MUST sensor in Yakama Nation, a region 

that exemplifies the data challenges faced by many tribal areas. Our team has been in close contact with 

the Tribal Traffic Safety Coordinator, whose support has been instrumental in facilitating connections 

with other key entities required for the successful installation of the sensor. One of the critical partners 

in this effort has been Yakama Power, which assisted in identifying a suitable telephone pole for 

mounting the MUST sensor. 
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The installation site selected was an intersection at Larue Road and Highway 97 in Toppenish, WA. This 

location is known to be one of the most dangerous intersections in the area, making it an ideal 

candidate for the implementation of our sensor technology. By providing a robust dataset on this high-

risk intersection, the Yakama Nation will be able to achieve a level of detail in traffic monitoring that was 

previously unattainable using classical methods. This data will be crucial for understanding and 

addressing the specific safety issues faced by the community. 

To complement the sensor installation, our team has developed a sophisticated dashboard tailored for 

the MUST system. This dashboard is designed to provide real-time data visualization and management, 

making it easier for engineers and traffic safety officials to monitor and analyze traffic conditions. The 

dashboard is equipped to work seamlessly with the MUST sensor, which utilizes advanced machine 

learning technology to sense traffic flow, road surface conditions, and ambient data such as humidity 

and temperature.  

The data collected by the MUST sensor can be visualized and managed through the dashboard, 

providing users with a comprehensive view of traffic conditions in real-time. This capability is 

particularly beneficial during colder months when road conditions can deteriorate rapidly, posing 

significant risks to travelers. By having access to real-time data, engineers can make informed decisions 

to improve safety measures and travelers can plan their routes more effectively. 

3.1.1. Ongoing Data Collection and Analysis 

Following the successful installation of the MUST sensor, our team has been actively collecting vital 

traffic data to support the implementation of targeted safety countermeasures. The data collection 

efforts focus on several key areas, including: 

•  Semi-trucks and Agricultural Vehicles: Monitoring the movement and behavior of large vehicles 

that are prevalent in the region. 

• Pedestrian Safety: Collecting data on pedestrian traffic to identify high-risk areas and improve 

crosswalks and other pedestrian facilities. 

• Heavy Fog and Low Visibility: Capturing environmental data to understand how adverse weather 

conditions impact traffic safety. 

• Human Behavior: Analyzing driver behavior, such as speeding and failure to stop at stop signs, to 

identify patterns and implement corrective measures. 
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The ongoing data collection efforts are crucial for developing a comprehensive understanding of traffic 

conditions and safety issues in Yakama Nation. By continuously monitoring these variables, we can 

provide valuable insights that will inform the design and implementation of effective safety 

interventions. 

3.1.2. Integration with NCHRP Projects 

In addition to the core functionalities of the MUST system, we are also incorporating technologies and 

methodologies developed from our National Cooperative Highway Research Program (NCHRP) projects. 

These advanced technologies enhance the capabilities of the MUST system, enabling more accurate and 

detailed data collection and analysis. By leveraging the insights gained from NCHRP projects, we can 

further improve the effectiveness of the MUST system in addressing traffic safety issues in tribal and 

rural areas. 

3.1.3. Benefits of the MUST System 

The implementation of the MUST system in Yakama Nation offers numerous benefits to both engineers 

and travelers. Some of the key advantages include: 

• Real-Time Traffic Information: Providing up-to-date information on traffic conditions, allowing 

travelers to make informed decisions about their routes. 

• Traffic Counts and Road Surface Conditions: Offering detailed data on traffic volume and road 

conditions, which are essential for planning maintenance and improvement projects. 

• Enhanced Safety During Adverse Weather: Monitoring environmental conditions to help 

travelers navigate safely during periods of heavy fog, low visibility, or other adverse weather 

conditions. 

• Support for Engineering Improvements: Providing engineers with the data needed to design and 

implement effective safety interventions, ultimately reducing the risk of traffic incidents. 

3.2. Cooperative and Comprehensive Multi-Task Surveillance Sensing and Interaction 
System Empowered by Edge Artificial Intelligence 

3.2.1. Introduction 

Modern transportation systems face significant challenges, including traffic congestion, accidents, and 

fatalities often caused by poor visibility and adverse road conditions. Over the past decade, 

advancements in sensing technologies have led to the integration of various sensors into intelligent 
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transportation systems (ITS). These sensors, combined with advanced data processing algorithms and 

communication systems, have been applied to numerous transportation applications, significantly 

enhancing traffic safety, mobility, and environmental sustainability (Greer et al., 2018; El Faouzi et al., 

2011). 

Despite the potential of these technologies to revolutionize transportation systems, they introduce new 

challenges such as redundant sensors, high maintenance costs, and data explosion (Liu et al., 2023). 

Traditional ITS solutions often prioritize technological advancements over practical user needs, resulting 

in complex systems that do not fully address real-world problems faced by road users and traffic 

managers. This focus on cutting-edge technologies at the expense of user needs can lead to bloated and 

redundant sensing systems (Greer et al., 2018; El Faouzi et al., 2011). 

To address these challenges, the concept of "Sensing as a Service" (SaaS) is proposed. SaaS aims to 

develop a user-oriented sensing system that effectively meets the core demands of traffic agencies. This 

concept is implemented in the Cooperative and Comprehensive Smart Edge Node for Sensing and 

OpeRation (COCO SENSOR) system. COCO SENSOR is designed to address key practical applications, 

including real-time vehicle counting and recognition, road-surface-condition classification, visibility 

estimation, and live communication among traffic controllers and road users  

The COCO SENSOR system architecture is composed of four levels (see Figure 3-1): 

• Application Level: Determines the needs of different users in various application scenarios, 

focusing on traffic status for transportation agencies and real-time safety warnings for road 

users. 

• Sensing Technologies Level: Utilizes parallel computing to efficiently perform multiple sensing 

tasks to meet the needs defined at the application level. 

• Data Level: Identifies the necessary data to support the sensing technologies. 

• Sensor Level: Involves the sensors used to provide data inputs to the system. 

These levels are interconnected through local and global communication systems, enabling 

comprehensive data collection and processing. 
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Figure 3-1 COCO SENSOR system architecture illustration (Liu et al., 2023) 

One of the primary challenges in modern ITS is data explosion, where the vast amount of multi-source 

data generated from various sensors overwhelms data centers. Estimates suggest that all data centers 

globally can only handle approximately 20ZB, while approximately 850ZB were generated daily in 2021. 

To address this, COCO SENSOR integrates edge computing, processing raw data close to where it is 

generated. This approach significantly reduces the computational load on central servers, minimizes 

data transmission latency, and enhances the system's responsiveness (Zhou et al., 2019). 

The COCO SENSOR system introduces a cooperative sensing mechanism that connects all the sensors in 

the system and shares the sensing results with all required users. This approach overcomes the 

inefficiencies of uncooperative sensing systems, which often lead to redundant data generation, 

increased costs, and decreased efficiency. Cooperative sensing ensures a comprehensive view of the 

traffic environment, enhancing perception accuracy and reliability (Chen et al., 2017; Tsukada et al., 

2020). 

To efficiently utilize limited computational resources on edge devices, COCO SENSOR employs parallel 

computation through three independent threads dedicated to environment sensing, vehicle tracking, 

and object detection. This parallelism enables the system to manage multiple sensing tasks 
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simultaneously, ensuring efficient resource allocation and enhanced system robustness in real-world 

applications. 

3.2.2. Methodology 

The COCO SENSOR system employs advanced multi-task sensing technologies, parallel computing, and 

cooperative sensing mechanisms to address practical transportation applications. The architecture of 

the system is designed to maximize efficiency and accuracy while operating within the constraints of 

edge computing devices. 

As shown in Figure 3-2. The COCO SENSOR system architecture is divided into three parallel threads to 

handle different sensing tasks: the environment thread, the tracking thread, and the object-detection 

thread. This division ensures efficient resource allocation and robust performance in real-world 

applications. 

The environment thread is responsible for visibility detection and road-surface-condition classification. It 

includes the following processes: 

• Image Dehaze and Visibility Detection: The dehaze algorithm estimates and removes haze from the 
input video stream, enhancing visibility and producing haze-free video. 

• Road-Mask Extraction: The method integrates contour detection and motion detection to generate 
road masks. Contour detection uses the Canny edge-detection algorithm (Canny, 1986) to identify 
object contours, while motion detection tracks moving objects to extract regions of interest. These 
methods are combined using the cosine similarity method to enhance accuracy. 
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Figure 3-2 Sensing technologies architecture 

The tracking thread connects different sensing tasks and manages data flow within the system. It 

includes: 

• Vehicle Tracking and Traffic Volume Counting: Background modeling and the SORT algorithm track 
moving objects in the region of interest, extracting and storing information in a global variable queue 
QQQ. The MobileNet V2 classifier then classifies road users and counts traffic volume by vehicle type 
(Sandler et al., 2018) 

• Radar Cooperative Camera Calibration: To address the challenges of speed measurement, COCO 
SENSOR integrates radar sensors with cameras for calibration. This method converts 2D image 
coordinates to 3D real-world coordinates, enabling accurate lane-based speed measurement without 
the need for physical calibration objects in the roadway. 

The object-detection thread processes selected video frames to detect and classify objects. It includes: 
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Object Detection Model: The MobileNet V2 and SSD models are used for object detection on limited IoT 
devices, pre-trained with the COCO dataset and fine-tuned with the MIO-TCD dataset for specific 
transportation-agent detection. 

The COCO SENSOR system includes a sophisticated communication system designed to synchronize 

information among COCO SENSOR units, signal controllers, and user devices through Wi-Fi or cellular 

networks. This system is essential for real-time data dissemination and interaction, ensuring that traffic 

information and warnings are efficiently communicated to the relevant parties. 

The communication system of COCO SENSOR can be divided into two main parts: 

Interaction with Signal Controllers: The communication between COCO SENSOR and the signal 
controllers is facilitated through either a cable connection or a local wireless network. The system 
captures real-time signal phase and timing (SPaT) information from the controllers using the National 
Transportation Communications for ITS Protocol (NTCIP) standard. This information is then stored in a 
buffer and can be accessed by the COCO SENSOR system for further processing. 

Interaction with User Devices: The system broadcasts SPaT information and sensing data to user 
devices, such as cell phones and wearable devices, using the COCO cooperative user application. This 
application enables users to receive real-time traffic updates and safety warnings. Additionally, COCO 
SENSOR integrates an independent thread for handling requests and messages generated by roadway 
users, such as crossing requests or accident notifications. 

The communication algorithms are designed to handle various types of data interactions: 

Data Transmission: The system transmits pedestrian information and receives waiting time data for 
each phase from the signal controller. This data exchange ensures that both the COCO SENSOR system 
and the signal controller are synchronized, providing accurate and timely traffic management 
information. 

Data Broadcasting: The SPaT and sensing data are broadcast to user devices, enabling real-time updates 
on traffic conditions. This broadcasting mechanism ensures that users receive the most current 
information, improving situational awareness and safety. 

User Requests and Messages: The system is capable of processing user-generated requests and 
messages. For instance, if a user sends a crossing request or reports an accident, the system can handle 
these inputs and respond appropriately, enhancing the overall interactivity and responsiveness of the 
traffic management system. 

Figure 3-3 illustrates the detailed communication scheme, highlighting the synchronization between 

COCO SENSOR units, signal controllers, and user devices. 
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Figure 3-3 The communication workflow  

3.2.3. Experiments 

The COCO SENSOR system was implemented on Raspberry Pi 4 for multi-task sensing. Raspberry Pi 4, a 

cost-effective and easily operable edge device, was chosen due to its suitability for large-scale 

deployments in transportation systems despite its limited hardware capabilities (e.g., absence of a GPU 

for video processing). Other hardware components included the DHT22 environment sensor, PTZ 

camera, radar sensor, communication kit, and a protective shell. A test vehicle, a cell phone with the 

COCO SENSOR application, a portable radar gun, and a laptop were also used in the evaluation. 
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To validate the performance of environment sensing, the team utilized public weather data from 

WSDOT weather stations near the testbeds as ground-truth data, which included real-time weather and 

visibility conditions. The overall accuracy of visibility detection reached 92.15% (with a 10% threshold). 

As shown in Table 3-1, the system demonstrated higher accuracy in better visibility conditions, while 

performance decreased in extreme conditions like thick fog or snowstorms. 

Table 3-1 Visibility Estimation Performance 

 

The vehicle tracking and classification system utilized background modeling and the SORT algorithm to 

track moving objects. The MobileNet V2 classifier was employed for road-user classification and traffic 

volume counting by vehicle type. The system demonstrated lane-scale vehicle counting with high 

accuracy in various traffic scenarios. For object detection, the MobileNet V2 and SSD models were used, 

pre-trained with the COCO dataset and fine-tuned with the MIO-TCD dataset for specific transportation-

agent detection. The object-detection results showed high accuracy for buses (96%) and cyclists (95%). 

The system integrated radar sensors with cameras for calibration to convert 2D image coordinates to 3D 

real-world coordinates, enabling accurate lane-based speed measurement. The method was validated 

with a portable radar gun, showing an average error within ±10%. 

The performance of COCO SENSOR's edge adaptation was evaluated using three different system 

architectures: sequential logic flow, parallel computing without AI trigger, and COCO SENSOR with 

parallel computing and AI trigger. The results demonstrated significant improvements in processing 

speed and efficiency with COCO SENSOR, as shown in Table 3-2. 
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Table 3-2 Processing Efficiency Evaluation 

 

3.2.4. Conclusion 

This technology presents the concept of "Sensing as a Service" (SaaS) and its implementation in the 

COCO SENSOR system for practical transportation applications. The COCO SENSOR system introduces a 

cooperative sensing mechanism and parallel computation to enhance perception accuracy and 

efficiency with limited computational resources on edge devices. The system was tested in real-world 

environments in collaboration with WSDOT and the City of Bellevue, demonstrating high accuracy in 

various practical applications such as traffic-volume counting by vehicle type, traffic-status detection, 

road-visibility estimation, and road-surface-condition classification. 

3.3. Real-Time Multi-Task Environmental Perception System for Traffic Safety Empowered 
by Edge Artificial Intelligence 

3.3.1. Introduction 

Weather conditions significantly impact roadway users, and sudden changes can be difficult to forecast, 

leading to serious safety concerns. Meteorological forecasts are only about 80% accurate within seven 

days (Rose et al., 2017). Low visibility, often caused by fog, dust, or smoke, is a major driving hazard. 

Additionally, road surfaces covered by snow, water, or ice reduce tire friction and increase braking 

distance, commonly causing fatal car crashes. These hazardous conditions often occur simultaneously 

during extreme weather, creating severe safety risks. Current sensing technologies and methods aid in 

traffic environment sensing but fall short in improving traffic safety due to three main reasons:  

• Single-task Focus of Environmental Sensors and Algorithms: Environmental sensors and 

algorithms typically address only one task. Most technologies target specific sensing tasks, such 

as visibility meters for visibility estimation, thermal cameras for image de-haze, and friction 
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sensors for road surface condition detection. However, improving traffic safety involves multiple 

environmental factors, necessitating a multi-task sensing system for comprehensive 

environmental monitoring.  

• Limitations of Centralized Processing Architecture: Traditional centralized processing systems 

fail to meet latency and reliability requirements. These systems transmit raw data to a central 

server for processing, resulting in delays and low reliability. Environment perception, critical for 

traffic safety, requires real-time performance. In rural areas, such as mountain roads, frequent 

weather changes demand timely alerts for drivers before entering hazardous regions. 

Centralized systems cannot provide these timely services due to communication and processing 

delays, limiting their effectiveness in weather-oriented traffic safety.  

• Discriminatory Access to Safety Information: Access to safety information is often inequitable 

for low-income groups and rural areas. Disparities in data acquisition lead to inadequate and 

unaffordable traffic data for these populations. Advanced onboard sensors, like LiDAR, thermal 

cameras, and tire friction sensors, are prohibitively expensive for low-income users. The data 

they collect primarily benefit the vehicles equipped with them, raising safety and equity 

concerns for other road users. Public data, like those from weather stations, are insufficient; 

they lack critical information such as road surface conditions and are updated at five-minute 

intervals. Moreover, weather stations cover limited areas and are costly to expand, particularly 

in regions like Washington State. 

 

This study proposes an Edge-based Multi-task Safety-oriented Environmental (Edge-MuSE) sensing 

system, utilizing monocular cameras to address weather-related traffic safety issues. Edge-MuSE is an 

integrated environment sensing system performing four sub-sensing tasks using video inputs. Firstly, 

Edge-MuSE provides visibility estimation based on image or video data captured by the camera sensors. 

Secondly, it removes haze from the original images or videos and reconstructs a clear vision for 

transportation agents. Thirdly, Edge-MuSE extracts road segments from the de-hazed images or videos 

by integrating road contour and optical traffic flow data. Finally, the system investigates multiple 

features, including dark channel value, intensity, color attenuation, and hue disparity, to classify road 

surfaces into four categories: dry, wet, snow-covered, and icy. All sensing tasks in the Edge-MuSE system 

are deployed on edge devices. These devices transmit perception results to users through cost-effective, 

intensive, and reliable local communication protocols with low latency. Over the past decade, 

advancements in Internet of Things (IoT) technologies (Wang et al., 2021) have enabled raw data 
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streaming and post-processing on edge nodes, enhancing cybersecurity and reducing the computational 

load on central processors. However, achieving efficient and reliable multi-task sensing on edge devices 

remains challenging. To address these challenges, the study optimizes the Edge-MuSE structure for edge 

computing architecture from two perspectives. The sensing tasks are optimized for edge computing to 

balance accuracy and efficiency. Additionally, Edge-MuSE employs multiple threads for parallel 

computing, maximizing the utilization of computational resources. 

3.3.2. Methodology 

A multi-task sensing technology was used in Edge-MuSE. Weather-oriented traffic safety challenges are 

influenced by various environmental factors such as road surface conditions and visibility. Compared to 

single-task sensing, multi-task sensing methods can integrate diverse sensing results for comprehensive 

environmental perception. Additionally, multi-task sensing methods can reduce system costs and 

computation loads by maximizing resource utilization. In the study, Edge-MuSE uses video data as the 

sole input, which helps reduce costs and computation loads by avoiding the need to integrate different 

environmental sensors. 

The architecture of the multi-sensing technologies used for traffic environment perception is shown in 

Figure 3-4. The sensing technologies are divided into three modules: 1) image de-haze; 2) road 

segmentation and visibility estimation; 3) road surface condition classification. These three steps are 

identified by different background colors in Figure 1. The following subsections introduce the details of 

these three modules. 
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Figure 3-4 Architecture of Edge-MuSE (Liu, et al., 2024) 

 

3.3.3. Image De-Haze & Visibility Estimation 

The primary objective of this step is to estimate the scattering effects caused by particles in the raw 

video inputs. To accomplish this, the study introduces an innovative feature extraction network 

designed to capture four critical features of the image data: Dark Channel, Maximum Contrast, Color 

Attenuation, and Hue Disparity. These features are then used to create a scattering map, which is 

mapped onto the image coordinates. This scattering map is subsequently utilized to estimate visibility 

and reconstruct a haze-free image.  

Based on empirical observations, existing image dehazing methods have proposed various critical 

metrics and prior knowledge for scattering map estimation. The study leverages four well-established 

metrics for haze effects estimation: 

• Dark Channel: Defined as the minimum value among all pixel colors within a local patch, the 

dark channel prior (He, et al, 2011) suggests that in haze-free patches, at least one-color channel 

exhibits a very low intensity, close to zero. Conversely, the presence of haze significantly 

increases the minimum dark channel value in the patch, making it a reliable indicator for haze 

removal. 
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• Maximum Contrast: Haze tends to reduce the contrast of images. According to Reference (Tan, 

2008), maximum contrast serves as a measure to remove haze. Applying maximum contrast 

within a local patch and extending it to neighboring areas can enhance the visibility of the 

image. 

• Color Attenuation: This metric is defined as the difference between the brightness and 

saturation of a pixel. Color attenuation prior (Zhu, et al., 2015) indicates that haze leads to a 

sharp decrease in saturation and an increase in brightness. The difference between these two 

values serves as a useful indicator for generating the scattering map. 

• Hue Disparity: Introduced by (Ancuti, et al., 2010) for haze removal, hue disparity is the absolute 

difference between the original image and its semi-inverse. In haze-free scenarios, there are 

significant hue differences between these values. The presence of haze reduces this difference, 

making hue disparity an effective measure for haze detection. 

3.3.4. Multi-Scale Feature Extraction Module 

The study designs an innovative feature extraction module that integrates four critical metrics to create 

a comprehensive haze removal algorithm. The module’s structure is visualized in Figure 3-5, and the 

feature extraction process is detailed across four primary steps: 

 

Figure 3-5 Multi-scale feature extraction module structure 

• Convolutional Layer: A 5x5 filter is applied to the input image matrix to perform the 

convolutional operation with a stride of one and zero padding. Inspired by the work cited in (Cai, 
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et al., 2016), the Maxout activation function (Goodfellow, et al., 2013) is used for non-linear 

mapping. This setup allows for the extraction of essential image features, where the filter design 

is particularly tailored for capturing these critical features as shown in Figure 3. For instance, an 

"opposite filter" is used to extract the dark channel feature by identifying the minimum value 

across three channels at each pixel, while a "round filter" captures visual contrasts by analyzing 

intensity differences. 

• Multi-Scale Mapping Layer: This layer employs filters of varying kernel sizes (1x1, 3x3, 5x5, 7x7) 

to capture both local and global features. The differing scales help the model to interpret 

features at multiple levels of detail, which is significant for effective haze removal. This design 

follows the findings of studies (Tang, et al., 2014) emphasizing the impact of multi-scale 

features. 

• Local Extremum Layer: Here, a spatial integration process takes place, where max pooling is 

applied within a 12x12 neighborhood centered on each pixel. This method helps to maintain 

resolution while overcoming local sensitivity and capturing prominent features across the patch. 

• Concatenation Layer: The final layer integrates the multi-scale feature maps by averaging them. 

This concatenated output combines the distinct feature maps into a unified representation of 

critical features. 

To complete the process, the study introduces a scattering map that combines these extracted feature 

maps based on prior knowledge. For example, the dark channel feature map is normalized to identify 

haze-free regions where at least one channel shows minimal intensity. The final scattering map is an 

average of the feature maps related to each critical metric, providing a comprehensive assessment of 

haze across the image. This methodology allows for a precise and nuanced removal of haze, leveraging 

both local and global image features. 

3.3.5. De-Hazed Image Reconstruction 

The estimated scattering map 𝑡𝑡(𝑥𝑥) is used to reconstruct the real scene 𝐽𝐽(𝑥𝑥), which is the haze-free 

image. The reconstruction process involves several key steps. Firstly, the scattering map 𝑡𝑡(𝑥𝑥) serves as 

the input for reconstructing the clear image 𝐽𝐽(𝑥𝑥). The haze-free image 𝐽𝐽(𝑥𝑥) is computed using a specific 

formula that considers the input image 𝐼𝐼(𝑥𝑥), the scattering map 𝑡𝑡(𝑥𝑥), and the atmospheric light 𝐴𝐴. 

The formula can be represented as: 𝐽𝐽(𝑥𝑥) = 𝐼𝐼(𝑥𝑥)
𝑡𝑡(𝑥𝑥)

− 𝐴𝐴
𝑡𝑡(𝑥𝑥)

. The atmospheric light 𝐴𝐴 is estimated through the 

pixels where the depth 𝑑𝑑 approaches infinity, typically identified as the sky in the image. The scattering 
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map 𝑡𝑡(𝑥𝑥) inferred from the feature extraction module provides depth information. Pixels where 𝑡𝑡(𝑥𝑥) 

approaches zero are considered sky pixels, and their intensity is used to determine the atmospheric light 

𝐴𝐴. Using these estimated values, the methodology reconstructs a clear, haze-free image 𝐽𝐽(𝑥𝑥) from the 

original hazy input 𝐼𝐼(𝑥𝑥). 

The final step of the methodology involves estimating the visibility based on the extracted scattering 

map t(x). In the study, visibility is defined as the distance at which an object or light can be clearly 

observed, measured by visual contrast Cv. Visual contrast 𝐶𝐶𝑣𝑣 is the relative difference between the light 

intensity of the background and the object. According to the Beer-Lambert law (Swinehart, 1962), the 

visual contrast Cv(d) can be represented as an exponential function of distance 𝑑𝑑: 

𝐶𝐶𝑣𝑣(𝑑𝑑) = exp(−γ𝑑𝑑) 

Here, 𝛾𝛾 is the contrast attenuation coefficient that describes the decrease in visual contrast with 

increasing distance 𝑑𝑑. Based on standards from the International Association of Marine Aids to 

Navigation and Lighthouse Authorities (IALA) (Clearman, 2010), the minimum contrast detectable by the 

human eye is 2%. Using ground truth visibility data d0 from weather stations, 𝛾𝛾 can be calculated as: 

 

γ = −
ln�CTv�

d0
 

where CTv  is the visual contrast threshold (i.e., 0.02). 

Similarly, we can use the median value tm of a local patch Ω in the scattering map t(x) to represent the 

scattering effects in the view. Based on the definition of the scattering map, the scattering coefficient β 

can be represented as: 

β = −
ln �Med𝑥𝑥∈Ω�𝑡𝑡(𝑥𝑥)��

𝑑𝑑0
 

To map the scattering map 𝑡𝑡(𝑥𝑥) to the contrast map 𝐶𝐶𝑣𝑣(𝑥𝑥) for visibility estimation, it is necessary to 

establish a function 𝑓𝑓 between the coefficients 𝛽𝛽 and 𝛾𝛾: 

γ = f(β) 

In this process, ground-truth visibility data is used as the training dataset to minimize the loss function, 

defined as the Mean Squared Error (MSE): 
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𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��γ − 𝑓𝑓(β)�2
𝑛𝑛

𝑖𝑖=1

 

By minimizing this MSE, the relationship between the scattering map and the visibility can be accurately 

modeled, allowing for effective visibility estimation based on the scattering map. 

3.3.6. Road Segmentation 

In the Edge-MuSE system, road segmentation is crucial for determining the sensing region, significantly 

impacting the final detection accuracy. To ensure accurate road segmentation, Edge-MuSE integrates 

two algorithms: road contour detection and vehicle motion. The structure of the Road Segmentation 

Thread is marked with a blue background in Figure 3-4. Each algorithm has its strengths and 

weaknesses. Contour detection can be applied in all scenarios for rapid road segmentation but has 

relatively low accuracy due to various environmental factors. Optical flow methods achieve high 

accuracy in road segmentation based on vehicle trajectory accumulation but can be time-consuming in 

low traffic volume scenarios, like rural areas. Additionally, certain road parts, such as shoulders and 

work zones, may be excluded from the estimated road mask due to limited vehicle coverage. Therefore, 

Edge-MuSE combines these methods using Euclidean distance (Danielsson, 1980) for accurate and 

efficient road segmentation. 

The input data for this thread should be the processed de-hazed video data. Initially, a background 

modeling algorithm is applied to the video data for background subtraction. This step separates moving 

objects (foreground blobs) like vehicles from static objects (background images) like roadways, 

eliminating interference between them in subsequent steps. Road contour detection uses the 

background image as input, while the vehicle motion detection method uses the foreground blobs.  

1) Contour Detection:  

Pre-processing: Erosion and dilation operations are performed to smooth object contours, break narrow 

necks, eliminate thin protrusions, bridge narrow discontinuities, eliminate small holes, and fill breaks in 

contour lines. 

Image Filtering: The first step of the Canny algorithm is to smooth the image using a Gaussian function 

to remove noise. 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = exp �−
𝑥𝑥2 + 𝑦𝑦2

2σ2 � /(2πσ2) 
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Image Gradient Calculation: The magnitude and direction of the image gradient are calculated. The 

partial derivatives in the X and Y directions are approximated, and the gradient magnitude and direction 

are determined. 

𝑀𝑀𝑥𝑥[𝑖𝑖, 𝑗𝑗] =
(𝐼𝐼[𝑖𝑖 + 1, 𝑗𝑗] − 𝐼𝐼[𝑖𝑖, 𝑗𝑗] + 𝐼𝐼[𝑖𝑖 + 1, 𝑗𝑗 + 1] − 𝐼𝐼[𝑖𝑖, 𝑗𝑗 + 1])

2
 

𝑀𝑀𝑦𝑦[𝑖𝑖, 𝑗𝑗] =
(𝐼𝐼[𝑖𝑖, 𝑗𝑗 + 1] − 𝐼𝐼[𝑖𝑖, 𝑗𝑗] + 𝐼𝐼[𝑖𝑖 + 1, 𝑗𝑗 + 1] − 𝐼𝐼[𝑖𝑖 + 1, 𝑗𝑗])

2
 

|𝑀𝑀(𝑖𝑖, 𝑗𝑗)| = �𝑀𝑀𝑥𝑥[𝑖𝑖, 𝑗𝑗]2 + 𝑀𝑀𝑦𝑦[𝑖𝑖, 𝑗𝑗]2 

θ(𝑖𝑖, 𝑗𝑗) = arctan�
𝑀𝑀𝑦𝑦[𝑖𝑖, 𝑗𝑗]
𝑀𝑀𝑥𝑥[𝑖𝑖, 𝑗𝑗]�

 

 

Contour detection is flexible but can be influenced by real-world factors like illumination, leading to false 

positives and negatives. To address these challenges, Edge-MuSE introduces vehicle motion detection 

methods. 

2) Optical Flow Detection:  

Pre-processing: The foreground blob consists of moving pixels, but static pixels can also be detected due 

to factors like camera shake. This step aims to handle false positives and negatives using the Canny 

algorithm for contour detection. Regions enclosed by contours are used to filter target objects like 

vehicles, pedestrians, and cyclists. 

Optical Flow Extraction: Edge-MuSE uses the Simple Online and Realtime Tracking algorithm (SORT) 

(Bewley, et al., 2016) to track objects and extract optical flow. A lower bound threshold is set to filter 

optical flow, and marked pixels are represented by a feature vector ϑ = [𝑥𝑥,𝑦𝑦,𝑑𝑑, 𝑣𝑣], where (𝑥𝑥,𝑦𝑦) is the 

object location, 𝑑𝑑 is the moving direction, and 𝑣𝑣 is the vehicle speed. 

Road Segmentation: Over time 𝑇𝑇, marked pixels accumulate and cover major traffic areas. For high 

traffic volumes, 𝑇𝑇 can be a few minutes, while for low-density rural roadways, a larger 𝑇𝑇 is needed to 

extract all target regions. 

By integrating these methods, Edge-MuSE ensures accurate and efficient road segmentation, crucial for 

reliable sensing region determination and improved detection accuracy. 
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3.3.7. Road Surface Condition Classification 

The third thread of Edge-MuSE is Road Surface Classification. This thread uses the road mask extracted 

from the background images as input. The feature extraction module is then applied to the road mask 

for feature extraction, with a structure similar to the one used for the scattering map. However, unlike 

haze removal, road surface condition detection focuses more on the light reflection properties of the 

pavement. As a result, the key features used in the module are dark channel value, gray value, and 

brightness value, which help classify the light reflection status on the road surface. Based on this status, 

the road surface condition can be categorized into four classes: 

• Dry: In dry conditions, light reflection on the road surface is diffused, allowing light from all 

parts of the road to reflect into the camera. This results in image features like gray value, dark 

channel, and brightness being distributed evenly (low standard deviation) across the road. This 

is the most common road surface condition. 

• Wet: In wet conditions, water on the road creates a flat surface where specular reflection 

occurs. This causes sharp spikes in feature values (e.g., dark channel, intensity, brightness) in 

specific areas, while nearly no light reflects in other road segments, leading to a wide range 

distribution (large standard deviation) in the feature values. 

• Snowy: Similar to dry conditions, light reflection on a snowy road surface is diffuse. However, 

white snow reflects more light into the camera than dry pavement, resulting in evenly 

distributed but relatively higher feature values compared to dry conditions. 

• Icy: Like wet conditions, light reflection on icy pavement is specular. However, due to the mixing 

of ice with snow and dirt from passing vehicles, the reflection is closer to diffuse than purely 

specular. This results in low-light regions where all three feature maps (dark channel, gray value, 

brightness) exhibit diffuse reflection characteristics. 

The extracted feature maps provide reliable inputs for road surface condition classification. In Edge-

MuSE, these inputs are fed into multiple classification methods, including Random Forest (RF), K-Nearest 

Neighbors (KNN), Support-Vector Machine (SVM), and Naive Bayes (NB). Among these, Random Forest 

(RF) performs the best and is therefore deployed in Edge-MuSE for practical classification of road 

surface conditions. 

3.3.8. System Structure for Edge-Adaptation 

Edge-MuSE is a comprehensive traffic environment sensing system deployed on edge devices. The 

advantages of using edge devices can be summarized in the following three points. Firstly, edge-based 
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systems relocate computation loads from central servers to the edge, reducing the time latency caused 

by high computation demands on the server side. Secondly, transmitting only the sensing results instead 

of the raw data to the server side reduces time latency and communication costs. Additionally, the 

sensing results produced by edge devices can be disseminated to users via local networks, ensuring 

lower response times. Finally, privacy-sensitive information can be filtered by edge devices before 

transmission to the server, enhancing privacy protection and cybersecurity. 

However, running a multi-task sensing system effectively on edge devices remains a significant challenge 

due to their limited computing capabilities. This section introduces a systematic design for adapting to 

edge devices. Many factors could become bottlenecks and decrease processing speed on edge devices. 

The proposed systematic design carefully balances these factors and optimizes the entire system by 

optimizing data stream on edge. 

To optimize the data stream, Edge-MuSE separates the algorithm into five parallel threads, each running 

independently in predefined memory spaces. These threads interact through data storage and retrieval 

in five predefined caches, increasing the system's robustness and efficiency on edge devices. Figure 3-6 

illustrates the data stream, with each thread detailed below. 
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Figure 3-6 Data streaming optimization on edge 

Video Streaming Thread: This thread captures video data from camera sensors and pre-processes it. 

Since different camera sensors have varying characteristics, this thread standardizes the input video 

data to a uniform size and frame rate (FPS) for further processing. It also filters out broken images from 

the raw data. The thread's input is raw video data, and the output is a filtered and standardized image 

queue with stable FPS, stored in Cache 1. A feedback mechanism checks Cache 1's occupancy status and 

adjusts the video streaming thread's computation resources accordingly. 

Image De-haze Thread: This thread estimates and removes haze from the images. It takes the image 

queue from Cache 1 as input and produces two outputs: a haze-free image queue and visibility 

estimation results. The visibility estimation results are stored in Cache 2 for dissemination, while the 

haze-free image queue is stored in Cache 3 for further processing. A feedback mechanism in Cache 3 

adjusts the memory allocation of the thread to control processing speed. 
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Road Segmentation Thread: This thread extracts the road mask from the haze-free image queue in 

Cache 3. For accurate background modeling and optical flow extraction, the batch size is set to 16. The 

output road mask is stored in Cache 4 and updated with each iteration. The previous road mask in Cache 

4 serves as one of the inputs to the road segmentation thread to enhance accuracy. 

Road Surface Condition Classification Thread: This thread classifies the road surface condition into four 

categories based on the feature extraction module. The input is the latest road mask stored in Cache 4, 

and the output road surface condition results are stored in Cache 5. A feedback mechanism adjusts the 

computation resource allocation as needed. 

Dissemination Thread: This thread inputs the de-hazed image queue from Cache 2, visibility estimation 

results from Cache 3, and road surface condition classification results from Cache 5. Edge-MuSE uses 

User Datagram Protocol (UDP) and local network sockets to transmit data to road users and traffic 

management agencies for information dissemination. 

The feedback mechanism is designed to adjust the distribution of computation resources automatically, 

based on the occupancy status of the five cache spaces. By frequently detecting whether a cache is 

overflowing or empty, the mechanism reallocates the computation resources of the upstream thread to 

decrease or increase its processing speed as needed. 
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CHAPTER 4. CONCLUSION 

The implementation of the Mobile Unit for Sensing Traffic (MUST) in Yakama Nation represents a 

significant step forward in addressing the traffic safety challenges faced by tribal and rural areas. By 

providing a low-cost, user-friendly, and highly effective data collection system, the MUST project aims to 

fill the data gap that has long hindered traffic safety efforts in these regions. The successful installation 

of the MUST sensor and the development of a comprehensive data visualization and management 

dashboard demonstrate the potential of this technology to transform traffic safety practices. 

As we continue to collect and analyze data, we are committed to working closely with the Yakama 

Nation and other stakeholders to ensure that the insights gained from this project lead to meaningful 

improvements in traffic safety. Our ultimate goal is to create a safer and more efficient transportation 

system for all members of the community, leveraging the power of advanced technology and data-

driven decision-making to achieve this vision. 

Through ongoing collaboration, innovation, and dedication, we believe that the MUST project will serve 

as a model for other tribal and rural areas seeking to enhance their traffic safety capabilities. We look 

forward to sharing our findings and continuing to make a positive impact on the safety and well-being of 

communities across the country. 

 

 

  



 

31 
 

CHAPTER 5. REFERENCES 

Ancuti, C. O., Ancuti, C., Hermans, C., & Bekaert, P. (2010). A fast semi-inverse approach to 
detect and remove the haze from a single image. In Proc. Asian Conf. Comput. Vis. 
Cham, Switzerland: Springer, pp. 501–514. 

Cai, B., Xu, X., Jia, K., Qing, C., & Tao, D. (2016). DehazeNet: An end-to-end system for single 
image haze removal. IEEE Trans. Image Process., 25(11), 5187–5198. 

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 8(6), 679–698. 

Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-View 3D Object Detection Network for 
Autonomous Driving. In IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 1907–1915. 

Clearman, B. (2010). International Marine Aids to Navigation. St Benedict, OR, USA: Mount 
Angel Abbey. 

Chtourou, A., Merdrignac, P., & Shagdar, O. (2021). Collective Perception Service for Connected 
Vehicles and Roadside Infrastructure. 2021 IEEE 93rd Vehicular Technology Conference 
(VTC2021-Spring). 

Danielsson, P.-E. (1980). Euclidean distance mapping. Comput. Graph. Image Process., 14(3), 
227–248. 

Djahel, S., Doolan, R., Muntean, G.-M., & Murphy, J. (2014). A communications-oriented 
perspective on traffic management systems for smart cities: Challenges and innovative 
approaches. IEEE Communications Surveys & Tutorials, 17(1), 125–151. 

El Faouzi, N.-E., Leung, H., & Kurian, A. (2011). Data fusion in intelligent transportation systems: 
Progress and challenges—A survey. Information Fusion, 12(1), 4–10. 

Federal Highway Administration. (2023). Tribal Transportation Safety. U.S. Department of 
Transportation. Retrieved July 18, 2024, from https://highways.dot.gov/federal-
lands/programs/tribal/safety 

Ferdowsi, A., Challita, U., & Saad, W. (2019). Deep learning for reliable mobile edge analytics in 
intelligent transportation systems: An overview. IEEE Vehicular Technology Magazine, 
14(1), 62–70. 

Goodfellow, I., et al. (2013). Maxout networks. In Proc. Int. Conf. Mach. Learn., pp. 1319–1327. 

https://highways.dot.gov/federal-lands/programs/tribal/safety
https://highways.dot.gov/federal-lands/programs/tribal/safety


 

32 
 

Greer, L., Fraser, J. L., Hicks, D., Mercer, M., & Thompson, K. (2018). Intelligent Transportation 
Systems Benefits, Costs, and Lessons Learned: 2018 Update Report. United States 
Department of Transportation, ITS Joint Program Office, Washington, DC. 

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks 
with pruning, trained quantization, and Huffman coding. arXiv Preprint 
arXiv:1510.00149. 

He, K., Sun, J., & Tang, X. (2010). Single Image Haze Removal Using Dark Channel Prior. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341–2353. 

Kravetz, D., & Noland, R. B. (2012). Spatial analysis of income disparities in pedestrian safety in 
northern New Jersey: Is there an environmental justice issue? Transp. Res. Rec., 2320(1), 
10–17. 

Liu, C., Yang, H., Ke, R., Sun, W., Wang, J., & Wang, Y. (2023). Cooperative and comprehensive 
multi-task surveillance sensing and interaction system empowered by edge artificial 
intelligence. Transportation Research Record, 2677(9), 652–668. DOI: 
10.1177/03611981231160174. 

Ma, K., & Wang, H. (2021). How connected and automated vehicle–exclusive lanes affect on-
ramp junctions. J. Transp. Eng., A, Syst., 147(2), Art. no. 04020157. 

National Highway Traffic Safety Administration. (2020). 2019 Fatality Data Show Continued 
Annual Decline in Traffic Deaths. U.S. Department of Transportation. Retrieved July 18, 
2024, from https://www.nhtsa.gov/press-releases/native-american-traffic-safety 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted 
residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 4510–4520. 

Swinehart, D. F. (1962). The Beer-Lambert law. J. Chem. Educ., 39(7), 333. 

Tang, K., Yang, J., & Wang, J. (2014). Investigating haze-relevant features in a learning 
framework for image dehazing. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 
2014, pp. 2995–3002. 

Tan, R. T. (2008). Visibility in bad weather from a single image. In Proc. IEEE Conf. Comput. Vis. 
Pattern Recognit., Jun. 2008, pp. 1–8. 

Tsukada, M., Oi, T., Kitazawa, M., & Esaki, H. (2020). Networked roadside perception units for 
autonomous driving. Sensors, 20(18), 5320. 

https://www.nhtsa.gov/press-releases/native-american-traffic-safety


 

33 
 

Wang, Y., Sun, W., Liu, C., Cui, Z., Zhu, M., & Pu, Z. (2021). Cooperative perception of roadside 
unit and onboard equipment with edge artificial intelligence for driving assistance. 
United States. Dept. Transp., Univ. Transp. Centers (UTC) Program, Office Assistant 
Secretary Res. Technol., Tech. Rep., Aug. 2021. [Online]. Available: 
https://rosap.ntl.bts.gov/view/dot/60635. 

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last 
mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 
1738–1762. 

Zhou, X., Ke, R., Yang, H., & Liu, C. (2021). When Intelligent Transportation Systems Sensing 
Meets Edge Computing: Vision and Challenges. Applied Sciences, 11(20), 9680. 

Zhu, Q., Mai, J., & Shao, L. (2015). A fast single image haze removal algorithm using color 
attenuation prior. IEEE Trans. Image Process., 24(11), 3522–3533. 

 

https://rosap.ntl.bts.gov/view/dot/60635

	Disclaimer
	TECHNICAL REPORT DOCUMENTATION PAGE
	SI* (Modern Metric) Conversion Factors
	List of Tables
	Executive Summary
	CHAPTER 1. INTRODUCTION
	1.1. Research Background
	1.2. Research Objectives

	CHAPTER 2. LITERATURE REVIEW
	2.1. Cooperative and Comprehensive Multi-Task Surveillance Sensing and Interaction System Empowered by Edge Artificial Intelligence
	2.1.1. Historical Background
	2.1.2. Advantages and Challenges of TMC-Based Systems
	2.1.3. Edge Computing Integration
	2.1.4. Limitations of Current Systems
	2.1.5. Cooperative Perception

	2.2. Machine Learning based Pedestrian Safety Analysis
	2.3. State of the Art and the Practice

	CHAPTER 3.  Main project and cORRESPONDING TECHNOLOGY DEVELOPMENT
	3.1. Main Project
	3.1.1. Ongoing Data Collection and Analysis
	3.1.2. Integration with NCHRP Projects
	3.1.3. Benefits of the MUST System

	3.2. Cooperative and Comprehensive Multi-Task Surveillance Sensing and Interaction System Empowered by Edge Artificial Intelligence
	3.2.1. Introduction
	3.2.2. Methodology
	3.2.3. Experiments
	3.2.4. Conclusion

	3.3. Real-Time Multi-Task Environmental Perception System for Traffic Safety Empowered by Edge Artificial Intelligence
	3.3.1. Introduction
	3.3.2. Methodology
	3.3.3. Image De-Haze & Visibility Estimation
	3.3.4. Multi-Scale Feature Extraction Module
	3.3.5. De-Hazed Image Reconstruction
	3.3.6. Road Segmentation
	3.3.7. Road Surface Condition Classification
	3.3.8. System Structure for Edge-Adaptation


	CHAPTER 4. Conclusion
	CHAPTER 5. REFERENCES



Accessibility Report


		Filename: 

		Cost-Effective System for Rural Roadway Traffic_202406_REM.pdf




		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization: 

		DOT, NTL




 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 26

		Failed: 3




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top
